Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.057
Filtrar
1.
Sci Rep ; 12(1): 2277, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145175

RESUMO

Botanical insecticides are preferred for their environment and user-friendly nature. Eugenol is a plant-based monoterpene having multifarious biocidal activities. To understand whether eugenol would persistently work against Aedes aegypti, we performed larvicidal bioassays on thirty successive generations and determined median lethal concentration (LC50) on each generation. Results showed no apparent differences between LC50 at F0 (63.48 ppm) and F30 (64.50 ppm) indicating no alteration of susceptibility toward eugenol. To analyze, if eugenol has any effect on metabolic detoxification-associated enzymes, we measured esterases (alpha and beta), cytochrome P450, and GST activities from the survived larvae exposed to LC50 concentration from F0-F30. Results revealed a decrease of esterases, GST, and cytochrome P450 activities at the initial 4-8 generations and then a gradual increase as the generations progressed. GST activity remained significantly below the control groups. Synergists (TPP, DEM, and PBO) were applied along with eugenol at F30 and LC50 concentration, and the said enzyme activities were recorded. Results showed a noticeable decrease in LC50 and enzyme activities indicating effective inhibitions of the respective enzymes. Overall, present results inferred that eugenol would effectively work as a larvicide for a longer period in successive generations without initiating rapid resistance and therefore could be advocated for controlling A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Eugenol/farmacologia , Inseticidas , Larva/efeitos dos fármacos , Aedes/embriologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Esterases/metabolismo , Glutationa Transferase/metabolismo , Larva/enzimologia , Dose Letal Mediana
2.
PLoS One ; 17(2): e0263677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143580

RESUMO

Spodoptera frugiperda (J.E. Smith) is a highly invasive noctuid pest first reported in northern Australia during early 2020. To document current status of resistance in S. frugiperda in Australia, insecticide toxicity was tested in field populations collected during the first year of establishment, between March 2020 and March 2021. Dose-response was measured by larval bioassay in 11 populations of S. frugiperda and a susceptible laboratory strain of Helicoverpa armigera. Emamectin benzoate was the most efficacious insecticide (LC50 0.023µg/ml) followed by chlorantraniliprole (LC50 0.055µg/ml), spinetoram (LC50 0.098µg/ml), spinosad (LC50 0.526µg/ml), and methoxyfenozide (1.413µg/ml). Indoxacarb was the least toxic selective insecticide on S. frugiperda (LC50 3.789µg/ml). Emamectin benzoate, chlorantraniliprole and methoxyfenozide were 2- to 7-fold less toxic on S. frugiperda compared with H. armigera while spinosyns were equally toxic on both species. Indoxacarb was 28-fold less toxic on S. frugiperda compared with H. armigera. There was decreased sensitivity to Group 1 insecticides and synthetic pyrethroids in S. frugiperda compared with H. armigera: toxicity was reduced up to 11-fold for methomyl, 56 to 199-fold for cyhalothrin, and 44 to 132-fold for alpha cypermethrin. Synergism bioassays with metabolic inhibitors suggest involvement of mixed function oxidase in pyrethroid resistance. Recommended diagnostic doses for emamectin benzoate, chlorantraniliprole, spinetoram, spinosad, methoxyfenozide and indoxacarb are 0.19, 1.0, 0.75, 6, 12 and 48µg/µl, respectively.


Assuntos
Resistência a Inseticidas , Inseticidas/toxicidade , Oxigenases de Função Mista/metabolismo , Spodoptera/crescimento & desenvolvimento , Animais , Austrália , Combinação de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidrazinas/toxicidade , Proteínas de Insetos/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Hormônios Juvenis/toxicidade , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Macrolídeos/toxicidade , Oxazinas/toxicidade , Vigilância da População , Spodoptera/efeitos dos fármacos , Spodoptera/enzimologia , ortoaminobenzoatos/toxicidade
3.
Insect Biochem Mol Biol ; 141: 103699, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34920078

RESUMO

Melanization is an innate immune response in insects to defend against the invading pathogens and parasites. During melanization, prophenoloxidase (PPO) requires proteolytic activation by its upstream prophenoloxidase-activating protease (PAP). We here cloned a full-length cDNA for a serine protease, named as SP7, from Ostrinia furnacalis. The open reading frame of SP7 encodes 421-amino acid residue protein with a 19-residue signal peptide. qRT-PCR analysis showed that SP7 mRNA levels were significantly upregulated upon exposure to microbial infection. Recombinant SP7 zymogen was activated by serine protease SP2. The active SP7 could cleave O. furnacalis PPOs including PPO2, PPO1b and PPO3. Additionally, active SP7 could form covalent complexes with serine protease inhibitor serpin-3 and serpin-4. The activity of SP7 in cleaving a colorimetric substrate IEARpNA or O. furnacalis PPOs was efficiently blocked by either serpin-3 or serpin-4. Our work thus revealed that SP7 and SP2 partially constituted a PPO activation cascade in which SP7 was activated by SP2 and then likely worked as a PAP. SP7 was effectively regulated by serpin-3 and serpin-4. The results would allow further advances in the understanding of melanization mechanisms in O. furnacalis.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Insetos/genética , Mariposas/genética , Serina Proteases/genética , Serpinas/genética , Animais , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Serina Proteases/metabolismo , Serpinas/metabolismo
4.
Gene ; 813: 146121, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915049

RESUMO

Lipases play crucial roles in food digestion by degrading dietary lipids into free fatty acids and glycerols. The domesticated silkworm (Bombyx mori) has been widely used as an important Lepidopteran model for decades. However, little is known about the lipase gene family in the silkworm, especially their hydrolytic activities as digestive enzymes. In this study, a total of 38 lipase genes were identified in the silkworm genome. Phylogenetic analysis indicated that they were divided into three major groups. Twelve lipases were confirmed to be expressed in the midgut at both transcriptional and translational levels. They were grouped into the same gene cluster, suggesting that they could have similar physiological functions. Quantitative real-time PCR (qRT-PCR) analyses indicated that lipases were mainly expressed in anterior and middle midgut regions, and their expression levels varied greatly along the length of midgut. A majority of lipases were down-regulated in the midgut when larvae stopped feeding. However, a unique lipase gene (Bmlip10583) showed low expression level during feeding stage, but it was significantly up-regulated during the larvae-pupae transition. These results demonstrated that expression of silkworm lipases was spatially and temporally regulated in the midgut during larval development. Taken together, our results provide a fundamental research of the lipase gene family in the silkworm.


Assuntos
Bombyx/enzimologia , Proteínas de Insetos/biossíntese , Lipase/biossíntese , Animais , Bombyx/genética , Sistema Digestório/enzimologia , Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Lipase/genética , Lipase/metabolismo , Filogenia , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Transcriptoma
5.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632981

RESUMO

Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid ß-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha ß-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Plants produce certain substances to fend off attackers like plant-feeding insects. To stop these compounds from damaging their own cells, plants often attach sugar molecules to them. When an insect tries to eat the plant, the plant removes the stabilizing sugar, 'activating' the compounds and making them toxic or foul-tasting. Curiously, some insects remove the sugar themselves, but it is unclear what consequences this has, especially for insect behavior. Dandelions, Taraxacum officinale, make high concentrations of a sugar-containing defense compound in their roots called taraxinic acid ß-D-glucopyranosyl ester, or TA-G for short. TA-G deters the larvae of the Maybug ­ a pest also known as the common cockchafer or the doodlebug ­ from eating dandelion roots. When Maybug larvae do eat TA-G, it is found in their systems without its sugar. However, it is unclear whether it is the plant or the larva that removes the sugar. A second open question is how the sugar removal process affects the behavior of the Maybug larvae. Using chemical analysis and genetic manipulation, Huber et al. investigated what happens when Maybug larvae eat TA-G. This revealed that the acidity levels in the larvae's digestive system deactivate the proteins from the dandelion that would normally remove the sugar from TA-G. However, rather than leaving the compound intact, larvae remove the sugar from TA-G themselves. They do this using a digestive enzyme, known as a beta-glucosidase, that cuts through sugar. Removing the sugar from TA-G made the compound less toxic, allowing the larvae to grow bigger, but it also increased TA-G's deterrent effects, making the larvae less likely to eat the roots. Any organism that eats plants, including humans, must deal with chemicals like TA-G in their food. Once inside the body, enzymes can change these chemicals, altering their effects. This happens with many medicines, too. In the future, it might be possible to design compounds that activate only in certain species, or under certain conditions. Further studies in different systems may aid the development of new methods of pest control, or new drug treatments.


Assuntos
Besouros/enzimologia , Glucosídeos/metabolismo , Herbivoria , Proteínas de Insetos/metabolismo , Lactonas/metabolismo , Sesquiterpenos/metabolismo , Taraxacum/metabolismo , beta-Galactosidase/metabolismo , Animais , Besouros/embriologia , Besouros/genética , Digestão , Glucosídeos/toxicidade , Glutationa/metabolismo , Hidrólise , Inativação Metabólica , Proteínas de Insetos/genética , Lactonas/toxicidade , Larva/enzimologia , Larva/genética , Metabolismo Secundário , Sesquiterpenos/toxicidade , Taraxacum/toxicidade , beta-Galactosidase/genética
6.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638976

RESUMO

Lysosomal degradation, the common destination of autophagy and endocytosis, is one of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B are potential new effectors of this pathway, as their malfunction is implicated in severe human diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant, we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of lysosomal clearance during both endocytosis and autophagy.


Assuntos
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Endocitose/genética , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Larva/enzimologia , Larva/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética
7.
Environ Toxicol Pharmacol ; 87: 103738, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34492396

RESUMO

The effects of two drugs containing the synthetic thyroid hormone levothyroxine (LEV) and an anti-thyroid drug containing propylthiouracil (PTU) on the three early life stages of Xenopus laevis were evaluated with the Frog Embryo Teratogenesis Assay-Xenopus, Tadpole Toxicity Test, and Amphibian Metamorphosis Assay using biochemical and morphological markers. Tested drugs caused more effective growth retardation in stage 8 embryos than stage 46 tadpoles. Significant inhibition of biomarker enzymes has been identified in stage 46 tadpoles for both drugs. AMA test results showed that LEV-I caused progression in the developmental stage and an increase in thyroxine level in 7 days exposure and growth retardation in 21 days exposure in stage 51 tadpoles. On the other hand, increases in lactate dehydrogenase activity for both drugs in the AMA test may be due to impacted energy metabolism during sub-chronic exposure. These results also show that the sensitivity and responses of Xenopus laevis at different early developmental stages may be different when exposed to drugs.


Assuntos
Antitireóideos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Propiltiouracila/toxicidade , Teratógenos/toxicidade , Tiroxina/toxicidade , Xenopus laevis , Acetilcolinesterase/metabolismo , Animais , Carboxilesterase/metabolismo , Embrião não Mamífero/anormalidades , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Masculino , Metamorfose Biológica/efeitos dos fármacos , Xenopus laevis/anormalidades , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
8.
Insect Biochem Mol Biol ; 137: 103639, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428582

RESUMO

Indole-3-acetic acid (IAA), a phytohormone auxin, may be involved in insect gall induction. We previously proposed that the IAA biosynthetic pathway is Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA or Trp → IAAld → IAA. In this study, we surveyed galling sawfly enzymes responsible for the rate-limiting steps using a heterologous protein expression system and identified PonAAS2, an aromatic aldehyde synthase, that catalyzed the conversion of Trp to IAAld. The PonAAS2 gene was highly expressed in early- and mid-stage larvae that contained high concentrations of IAA, but the expression level was almost negligible in larvae that had escaped from their gall in autumn and contained very low concentrations of IAA. An inhibitor of PonAAS2, obtained by screening a chemical library, inhibited IAA production in sawfly enzyme solution by 80%, suggesting the important role of this enzyme in IAA biosynthesis in sawfly.


Assuntos
Himenópteros/enzimologia , Ácidos Indolacéticos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Animais , Himenópteros/crescimento & desenvolvimento , Larva/enzimologia , Larva/crescimento & desenvolvimento
9.
Arch Insect Biochem Physiol ; 107(4): e21822, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155698

RESUMO

RNAi efficiency in insects is different from species to species; some species in Coleoptera are relatively more amenable to RNA interference (RNAi) than other species. One of the major factors is the presence of dsRNA-degrading enzymes, called dsRNases, in saliva, gut, or hemolymph in insects, which degrade the double-stranded RNA (dsRNA) introduced, resulting in the low efficacy of RNAi. In this study, we report a dsRNA-degrading activity in the gut homogenates from the spotted-wing drosophila, Drosophila suzukii, by ex vivo assay. Then, we identified two Drosophila suzukii dsRNase genes, named DrosudsRNase1 and DrosudsRNase2. In silico analysis shows that the gene structures are similar to dsRNases found in other insects. When dsRNases expressed in Sf9 cells were compared for their dsRNA degrading activities, dsRNase1 was more vital than dsRNase2. Both dsRNases were expressed highly and exclusively in the gut compared to the rest of body. Also, they were highly expressed during larval and adult stages but not in embryonic and pupal stages, suggesting the dsRNases protect foreign RNA molecules received during the feeding periods. DsRNase1 was expressed at a higher level in adults, whereas dsRNase2 showed more expression in early larvae. Our study on the tissue and development-specific patterns of dsRNases provides an improved understanding of the RNAi application for the management of D. suzukii.


Assuntos
Drosophila/enzimologia , Endorribonucleases/metabolismo , Proteínas de Insetos/metabolismo , RNA de Cadeia Dupla/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Drosophila/genética , Embrião não Mamífero/enzimologia , Endorribonucleases/genética , Feminino , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/genética , Larva/enzimologia , Masculino , Pupa/enzimologia , Células Sf9
10.
Parasit Vectors ; 14(1): 338, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174948

RESUMO

BACKGROUND: Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. RESULTS: Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. CONCLUSIONS: The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects.


Assuntos
Aedes/enzimologia , Anopheles/enzimologia , Culex/enzimologia , Hidroliases/metabolismo , Proteínas de Insetos/metabolismo , Aedes/genética , Aedes/crescimento & desenvolvimento , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Culex/genética , Culex/crescimento & desenvolvimento , Feminino , Hidroliases/genética , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Ribulosefosfatos/metabolismo
11.
Dev Comp Immunol ; 124: 104184, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34171367

RESUMO

We previously identified three putative prophenoloxidase-activating proteinase (mdPAP1, mdPAP2, and mdPAP3) genes from housefly Musca domestica by transcriptomic analysis. In this study, mdPAP1 cDNA was cloned, and the function of its encoded protein was analyzed. The cDNA of mdPAP1 was 1358 bp, and it contained a single open reading frame of 1122 bp encoding a predicted MdPAP1 protein of 373 amino acids. The estimated molecular weight of MdPAP1 was 41267.08 Da with an isoelectric point of 6.25. The deduced amino acid sequence of MdPAP1 exhibited high similarity to known PAPs of insects. mdPAP1 was detected in larvae, pupae, and adult housefly, and the expression level of mdPAP1 was upregulated in bacterial challenged larvae. The recombinant protein of MdPAP1 expressed in Escherichia coli could cleave the prophenoloxidase into phenoloxidase in M. domestica hemolymph infected by bacteria and result in a significant increase of the total phenoloxidase activity. In addition, RNA interference-mediated gene silencing of mdPAP1 significantly increased the mortality of M. domestica larvae. Results indicated that mdPAP1 was involved in the activation of the prophenoloxidase against bacterial infection in M. domestica.


Assuntos
Infecções Bacterianas/imunologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Moscas Domésticas/imunologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Infecções Bacterianas/enzimologia , Infecções Bacterianas/microbiologia , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Moscas Domésticas/enzimologia , Moscas Domésticas/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/imunologia , Larva/microbiologia , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Serina Endopeptidases/genética
12.
Pestic Biochem Physiol ; 176: 104860, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119211

RESUMO

The Asian gypsy moth, Lymantria dispar, as one of the most important forest pests in the world, can feed on more than 500 species of host plants, causing serious damage to the forests. Poplar is one of the favorite host plants of L. dispar. The present study aimed to explore the effects of poplar secondary metabolites on the growth and detoxification function of L. dispar larvae. We also aimed to study the expression of glutathione S-transferase (GST) genes in different developmental stages and in response to treatment with secondary metabolites. Six kinds of main secondary metabolites and three groups of characteristic mixed secondary metabolites were selected as follows: Caffeic acid, salicin, rutin, quercetin, catechol, flavone, mixture 1 (salicin and flavone), mixture 2 (salicin, caffeic acid and catechol), and mixture 3 (flavone, caffeic acid and catechol) according to the content changes of secondary metabolites in poplar. The thirteen GST genes were selected as candidate genes to study the expression of GST genes in different developmental stages and after treatment with secondary metabolites using quantitative real-time reverse transcription PCR. The LdGSTe4 and LdGSTo1 genes could be induced by secondary metabolites and were screened to explore their detoxification function against secondary metabolites using RNA interference technology. The results showed that salicin and rutin significantly induced the expression of LdGSTe4 and LdGSTo1. Under the stress of secondary metabolites, LdGSTe4 silencing affected the adaptability of L. dispar larvae to salicin and rutin. LdGSTe4 silencing resulted in a significant decrease in the body weight of L. dispar, but had little effect on the relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food, and approximate digestibility, as well as the survival rate and development time. These results provide a deeper understanding of the adaptive mechanism of L. dispar to host plants, form the foundation for the further research into the host resistance mechanism, and identify target genes for breeding resistant transgenic poplar.


Assuntos
Glutationa Transferase/genética , Proteínas de Insetos/genética , Mariposas , Populus , Animais , Larva/enzimologia , Larva/genética , Mariposas/enzimologia , Mariposas/genética , Populus/metabolismo , Quercetina
13.
Arch Insect Biochem Physiol ; 107(3): e21792, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33948994

RESUMO

Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.


Assuntos
Mariposas/enzimologia , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Intestinos/enzimologia , Larva/enzimologia , Simulação de Acoplamento Molecular , Mariposas/genética , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética
14.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33753580

RESUMO

The midgut of lepidopteran larvae is a multifunctional tissue that performs roles in digestion, absorption, immunity, transmission of pathogens and interaction with ingested various molecules. The proteins localized at the inner apical brush border membrane are primarily digestive proteases, but some of them, like aminopeptidase N, alkaline phosphatase, cadherins, ABC transporter C2, etc., interact with Crystal (Cry) toxins produced by Bacillus thuringiensis (Bt). In the present study, aminopeptidase N (APN) was characterized as Cry-toxin-interacting protein in the larval midgut of castor semilooper, Achaea janata. Transcriptomic and proteomic analyses revealed the presence of multiple isoforms of APNs (APN1, 2, 4, 6 and 9) which have less than 40% sequence similarity but show the presence of characteristic 'GAMENEG' and zinc-binding motifs. Feeding a sublethal dose of Cry toxin caused differential expression of various APN isoform. Further, 6thgeneration Cry-toxin-exposed larvae showed reduced expression of APN2. This report suggests that A. janata larvae exploit altered expression of APNs to overcome the deleterious effects of Cry toxicity, which might facilitate toxin tolerance in the long run.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Mariposas/enzimologia , Animais , Trato Gastrointestinal/enzimologia , Resistência a Inseticidas/fisiologia , Isoenzimas/metabolismo , Larva/enzimologia
15.
Zebrafish ; 18(1): 73-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33538651

RESUMO

Low and variable growth and survival rates (SR) of 6-10 days postfertilization zebrafish larvae are a problem. This problem seems to be linked to starter feed characteristics. This study is an attempt to find alternatives to address these requests. For this, larvae were fed fresh and lyophilized microalgae (Chlorella, Scenedesmus, and Haematococcus), egg yolk (YOLK), lyophilized Artemia nauplii (LAN), and a combination of them. The lowest SR was observed in algae-fed larvae. All died on day 11 showing an emaciated appearance, similar to starved larvae. The highest SR was observed in YOLK- and LAN-fed larvae, which also showed an elongated anterior part of the body. Negative correlations of SR with vegfaa (vascular endothelial growth factor) and morphometric traits with igf2a (insulin-like growth factor) were also found and supported by changes at the molecular level. The presence of algae in the digestive tract of the larvae and the observation of fecal droppings indicate that the algae have an appropriate size and are palatable. The increase in the digestive enzyme activity shows the larval effort to digest the algae. The fact that the algae-fed larvae died even before the larvae were kept in starvation indicates the dramatic amount of energy that the larvae spent in microalgae digestion. Although both YOLK- and LAN-fed larvae had the highest SR, LAN group started to feed on Artemia nauplii sooner. This can be linked to the delayed growth in YOLK-fed larvae and an accelerated growth in the case of LAN-fed group. LAN is an expensive feed with negative effects on water quality, whereas YOLK is a cheap and nutritionally balanced feed with fine granular texture that contributes to a larval SR similar to LAN without affecting water quality. In conclusion, microalgae cannot be considered a suitable starter food for zebrafish, whereas LAN and YOLK can be considered good starter feeds.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/instrumentação , Trato Gastrointestinal/enzimologia , Expressão Gênica , Peixe-Zebra/fisiologia , Animais , Digestão , Larva/anatomia & histologia , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
16.
J Insect Physiol ; 130: 104196, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545106

RESUMO

Plant secondary metabolites influence the feeding in insects through several modes of action. In this study, the physiological effects of erucin isothiocyanate were investigated on the elm leaf beetleXanthogaleruca luteola(Müller) (Coleoptera: Chrysomelidae) via impact on crustacean cardioactive peptide (CCAP) and midgut digestive enzymes. Third instar larvae of elm leaf beetle were fed on leaves impregnated with erucin for three days. The results showed that erucin decreasedα-amylase, lipase, and protease release. Western blot analysis and competitive ELISA showed that erucin decreased CCAP content of the midgut, brain, and hemolymph. Moreover, incubation of dissected midgut with CCAP and also its injection into the hemocoel increased digestive enzyme release. It could be concluded that erucin isothiocyanate decreases CCAP content that itself led to a decrease in digestive enzyme release. Also, it suggests that CCAP could be one of the factors, regulating feeding activities in the elm leaf beetle. This report shows that CCAP is both a midgut factor and a neuropeptide that regulates digestive enzyme release in the elm leaf beetle and could be used to study erucin effects in insects.


Assuntos
Besouros/metabolismo , Sistema Digestório/enzimologia , Neuropeptídeos/metabolismo , Sulfetos/metabolismo , Tiocianatos/metabolismo , Animais , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/metabolismo
17.
PLoS One ; 16(1): e0245649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471847

RESUMO

Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.


Assuntos
Comportamento Alimentar , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/biossíntese , Intestinos/enzimologia , Lepidópteros/enzimologia , Serina Proteases/biossíntese , Animais , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Lepidópteros/genética , Serina Proteases/genética
18.
Sci Rep ; 11(1): 2081, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483565

RESUMO

The Hessian fly is an obligate parasite of wheat causing significant economic damage, and triggers either a resistant or susceptible reaction. However, the molecular mechanisms of susceptibility leading to the establishment of the larvae are unknown. Larval survival on the plant requires the establishment of a steady source of readily available nutrition. Unlike other insect pests, the Hessian fly larvae have minute mandibles and cannot derive their nutrition by chewing tissue or sucking phloem sap. Here, we show that the virulent larvae produce the glycoside hydrolase MdesGH32 extra-orally, that localizes within the leaf tissue being fed upon. MdesGH32 has strong inulinase and invertase activity aiding in the breakdown of the plant cell wall inulin polymer into monomers and converting sucrose, the primary transport sugar in plants, to glucose and fructose, resulting in the formation of a nutrient-rich tissue. Our finding elucidates the molecular mechanism of nutrient sink formation and establishment of susceptibility.


Assuntos
Dípteros/fisiologia , Glicosídeo Hidrolases/metabolismo , Triticum/parasitologia , Sequência de Aminoácidos , Animais , Dípteros/enzimologia , Dípteros/crescimento & desenvolvimento , Transferência Genética Horizontal , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Parasita , Hidrolases , Larva/enzimologia , Larva/crescimento & desenvolvimento , Nutrientes/metabolismo , Estrutura Secundária de Proteína , Virulência
19.
Sci Rep ; 11(1): 531, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436810

RESUMO

The antibiosis effect of gallic acid on Spodoptera litura F. (Lepidoptera: Noctuidae) and its parasitoid evaluated by feeding six days old larvae on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm, 3125 ppm) of the phenolic compound revealed higher concentration (LC50) of gallic acid had a negative impact on the survival and physiology of S. litura and its parasitoid Bracon hebetor (Say) (Hymenoptera:Braconidae). The mortality of S. litura larvae was increased whereas adult emergence declined with increasing concentration of gallic acid. The developmental period was delayed significantly and all the nutritional indices were reduced significantly with increase in concentration. Higher concentration (LC50) of gallic acid adversely affected egg hatching, larval mortality, adult emergence and total development period of B. hebetor. At lower concentration (LC30) the effect on B. hebetor adults and larvae was non-significant with respect to control. Gene expression for the enzymes viz., Superoxide dismutase, Glutathione peroxidase, Peroxidase, Esterases and Glutathione S transferases increased while the total hemocyte count of S. litura larvae decreased with treatment. Our findings suggest that gallic acid even at lower concentration (LC30) can impair the growth of S. litura larvae without causing any significant harm to its parasitoid B. hebetor and has immense potential to be used as biopesticides.


Assuntos
Agentes de Controle Biológico , Ácido Gálico/farmacologia , Himenópteros/efeitos dos fármacos , Larva/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Animais , Contagem de Células , Relação Dose-Resposta a Droga , Ácido Gálico/administração & dosagem , Glutationa Peroxidase/metabolismo , Hemócitos , Himenópteros/crescimento & desenvolvimento , Larva/citologia , Larva/enzimologia , Larva/crescimento & desenvolvimento , Spodoptera/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
20.
Methods Mol Biol ; 2240: 119-124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423231

RESUMO

Acetylcholinesterase (AChE) is a useful biomarker for organophosphate and carbamate pesticides exposure. The inhibition of this enzyme has been associated with neurotoxicity and alterations at higher levels of biological organization, such as behavior and development impairments. In this chapter, we describe the methodologies for analyses of AChE activity in pools of 96 h of embryos of zebrafish (Danio rerio) using a spectrophotometric method adapted to 96-well microtiter plates.


Assuntos
Acetilcolinesterase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Larva/enzimologia , Espectrofotometria/instrumentação , Fatores de Tempo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...